

ÇANKAYA UNIVERSITY

Department of Mathematics and Computer Science

MCS 102 - Calculus for International TraDE II

FIRST MIDTERM EXAMINATION 2014-2015 Spring Semester 19.03.2015

STUDENT NUMBER: NAME-SURNAME: SIGNATURE: INSTRUCTOR: SECTION: DURATION: 100 minutes

Question	Grade	Out of
1		25
2		15
3		25
4		10
5		30
Total		105

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.

2) Check that the exam paper contains 5 problems.

3) Show all your work. No points will be given to correct answers without reasonable work.

Question 1. Evaluate the following indefinite integrals.

a.
$$\int (2x^{2} + 1)(2x^{2} - 1)dx$$

b.
$$\int \frac{x^{3} + x^{2}}{3x^{4} + 4x^{3} + 1}dx$$

c.
$$\int \frac{1}{(x+1)^{2}(x-1)}dx$$

d.
$$\int (x^{2} + 1)e^{-x}dx$$

Question 2. Calculate the following definite integrals.

a.
$$\int_{1}^{3} \frac{\sqrt[5]{x} + \sqrt[3]{x}}{x^{2}} dx$$

b. $\int_{-1}^{1} \frac{6x}{\sqrt{3x^{2} + 1}} dx$

Question 3.

a.Find the area of the region bounded by $y = 2x^2 + 1$ and y = 1 - 2x.

b.Find the area of the shaded region $(S_1 + S_2)$.

Question 4.

a. If the marginal revenue function is given by

$$\frac{dr}{dq} = q(2 - \frac{500}{q^{3/2}})$$

and the revenue from 100 units of product is 600 (which means r(100) = 600), find the revenue function.

b. By using the revenue function you have found in part (a), evaluate r(50).

Question 5.

a. Consider the following matrices:

$$A = \begin{bmatrix} -2 & -1 \\ 3 & 5 \end{bmatrix} \quad B = \begin{bmatrix} -4 & 9 \\ 1 & 2 \end{bmatrix}$$

By computing $(AB)^T$ and $B^T A^T$, verify that $(AB)^T = B^T A^T$.

b. Solve the following system of linear equations, by using matrix reduction.

$$\begin{cases} 3x + y &= 4\\ y + z &= 3\\ -x + 2y + 3z &= 4 \end{cases}$$